Sunday, 23 April 2017

Decommissioning - facts and fallacies.

I wrote this after listening to The Nuclear Humanist (Thies Beckers') response to Robert Llewellyn's (Fully Charged) snipes against nuclear power. Thies is right but there's an outstanding question he should address to Robert Llewellyn, Mark Z. Jacobson and their ilk. Do you support early decommissioning of German nuclear power reactors?

UK situation.

In UK, all the DECC decommissioning costs (to UK government) are for weapons sites (including submarines) and shut Magnox reactors (which are now all shut). Costs of decommissioning other power reactors: PWR and AGR, is solely the responsibility of the owners. EDF own all remaining power reactors. EDF have a fund growing annually for this mandated by UK government. It's a kind of tax. ~ 5% of their revenue. This is how decommissioning is handled in all Western democracies I know of.

Magnox spent fuel is all being reprocessed to remove plutonium. UK has a PUREX plant called THORP to do this. This extracts plutonium from spent fuel. That plutonium is not quite weapons grade but could provide very useful fuel for fast reactors. Alternatively - if anti-nukes have their way this plutonium will have to be disposed of too so that is cannot be used to make even substandard nuclear weapons. Only Magnox reactors will bear this extra reprocessing cost because Magnox reactors were special. The design was dual purpose. The spent fuel can be used to make nuclear weapons. Magnox are also far more expensive to decommission than PWRs because decommissioning was not considered in advance of their design. A flaw never to be repeated by other power reactor designs.

Europe and Sweden

Sweden has no Magnox reactors. Their PWR reactor decommissioning will be entirely the responsibility of the owners (via the decommissioning fund). Provided they are not shut prematurely, their decommissioning fund will bear the cost. The same kind of fund as per UK EDF reactors.

In Germany, plants are being shut too soon. So German decommissioning funds are not yet big enough to bear the cost. I wonder what Llewellyn and Jacobson think of that? Was early German shutdown a good idea?

Tuesday, 20 December 2016

Report by Congress says: Obama Admin Fired Top Scientist to Advance Climate Change Plans

I doubt Obama's media darlings will be reporting this

Dec 20, 2016: news report: Congress: Obama Admin Fired Top Scientist to Advance Climate Change Plans, Investigation claims Obama admin retaliated against scientists, politicized DoE

Full report: U.S. Department of Energy Misconduct Related to the Low Dose Radiation Research Program (pdf)

Obama administration fired a top scientist who got out of line and wanted scientific research done into actual harms of banned substances.

Background: For decades now, the old ruling against carcinogenic substances: No safe dose, based on a linear, no-threshold, LNT, dose-response model has been disputed. No-safe dose is widely used by regulatory agencies, especially for carcinogenic substances. Some of the problems with no-safe dose are: at least one agency thinks everything is a carcinogen (such as the UN IARC who literally say 99.9% of everything (substance and activity) they investigated was carcinogenic. They sub-contracted NRDC researchers to find that. The no-safe dose model assumes there is no real protection against carcinogens, in that it considers every animal to be, more or less, equally susceptible. It believed genetic damage is carried down the lineage. That is absolutely not the case. In recent decades, modern biology found several mechanisms, which work at the cellular level, by which animals protect themselves from cancer. Some animals have high protection against cancer, such as: Elephants, blind mole rat, naked mole rat, water bears (tardigrades) to name but 4. These protective measures use a variety of mechanisms (proteins to protect DNA, widely different levels of cell lysis, mechanisms to prevent DNA insertion by alien creatures such as viruses, etc.). Different DNA repair mechanisms are present at a cellular level to repair damaged or broken DNA. Humans are about mid-way. Not the most susceptible animal but certainly not the least.

The cost of no-safe dose to industry may be in the trillions. It is certainly at least tens of billions each year. I guess no one knows because we don't really study it. Regulatory agencies never bothered with cost-benefit before they enacted no-safe dose. They do not review cost-benefits. E.g. Notice how Wikipedia don't even discuss cost-benefit. Presumably because there are not enough comprehensive studies; as academics and regulators are too cowed to write them. One might get sacked.

Scientists in the nuclear power, and radiation medicine (anti-cancer) industries have tried for years to establish a threshold dose instead. It looks like the Obama administration fired at least one scientist to make an example and establish who's in charge. To establish who has the right to decide what science says.

Thursday, 8 December 2016

Sarcy sarcophagus

Big song and dance over €1.5bn spent on a sarcophagus, or shield, above the exploded Chernobyl reactor. But what was the point of it? It protects no one from radiation. Radiation travels in straight lines. No one flies in the airspace above the reactor. A shield around the reactor could've been something as simple are a 4 metre wide earthwork about 5 metres high. The 3 neighboring reactors at Chernobyl continued operation for years after. They were shut in 1991, 1996, and 2000. For 14 years, when the radiation levels are much higher than now, workers continued to operate those reactors. The sarcophagus is a 1.5 billion Euro moral statement financed by Chernobyl Shelter Fund saying : nuclear power is forever dangerous - be very afraid.
This sarcophagus is certainly an admirable engineering accomplishment : it is the largest movable object ever built by humanity, but it is useless health wise.

The world is spending €1.5bn (one and a half billion euros) to protect itself from harmless levels of radiation.
For the same €1.5bn Ukraine could've built an advanced molten salt test reactor and prototype. They could've had cheaper, safer nuclear power instead of relying on Russian gas so much. €500 million of that money came from the European Bank for Reconstruction and Development (EBRD). Rather construct and develop something useful to increase wealth. They chose to throw the money away.

Monday, 5 December 2016

Brief history of radiation protection. What does it mean?

People are prone to jump on moral crusades. We see it today with global warming. Back in the day, radiation and cancer were a moral crusade.

In the early days of radiation it was the Wild West. No radiation limits. Marie Curie died of radiation induced cancer. Radium girls often caught mouth cancer. By the 1920s it was clear that high radiation doses presented a serious health risk. Dose limits were imposed in the early 1930s. OMG! - how did humanity survive before we had environmentalists to protect us? Easy. Sensible folks noticed something was wrong and proposed regulation to stop bad things. Yet even back then I bet we had the equivalent of SJWs; crusaders who pushed regulation too far.

No widespread major illnesses developed among radiation workers after maximum dose limits were imposed in the early 1930s. Consider the following timeline. In response the development of the atomic bomb radiation protection standards were increased. Later in response to the threat of nuclear power, radiation protection standards were ratcheted tight.

  • 1931: National Council on Radiation Protection establish first formal dose limit = 1 mGy/day
  • 1934: International X-ray and Radium Protection Committee (later to become ICRP) set limit = 2 mGy/day, ~ 730 mGy/year.
  • 1945 Aug: first atom bombs dropped.
  • 1948: Radiation protection group (US, Canada and UK) reduce permissible human radiation dose by half (to ½ mGy/day, ~ 183 mGy/year)
  • 1950: ICRP reduce recommended limit to 3 mGy/week, ~ 150 mGy/year.
  • 1953 Dec: Eisenhower's atoms for peace UN speech calls for civilian nuclear power
  • 1954 Mar: Rockefeller foundation meet to discuss radiation. Presumably in response to the threat of plentiful atomic power promised by Eisenhower just months earlier. Probably not in response to the Atomic bomb threat; although nuclear tests were increasing during the 1950s, peaking, by number, in 1958 and 1961. In 1954 atomic bomb testing was not huge. 8 tests during the whole year. Rockefeller sponsor NAS BEAR [Biological Effects of Atomic Radiation] committee, pick its membership. Help set its agenda.
  • 1955 Apr: NAS BEAR begin work.
  • 1956 Jun: NAS BEAR publish in NYT calling for no safe radiation dose. Excluding evidence by Ernst Caspari which contradicted no safe dose).
  • 1961: AEC tighten dose limits for occupational exposure to an average of 50 mGy per year after the age of 18 while continuing to suggest that general population exposure levels be restricted to 10% of the occupational levels (5 mGy per year) for individuals. [average U.S. natural exposure from background radiation ~ 4 mGy per year]
  • 1963 Aug: Countries sign global atomic bomb test ban treaty. BEAR scientists congratulate themselves on a job well done: "We made the world a safer place".
  • 1975: I'm told in undergraduate physics class there is "no safe dose" for radiation. That scientists are certain of this. All the evidence tells us. Ernst Caspari is apparently a non person. Real Science says his research never happened. [ I remember so well because I questioned the lecturer on it immediately as it contradicted everything I knew about the response of biological systems to stress ]

PS: All radiation units above were converted to mGy (milli-Gray) to give approximate values for comparison. In reality some limits were set as REMs some as milli-Gray, most as roentgens.

High/medium dose radiation causes cancer

No safe dose: Is not peculiar to radiation. It was decreed that there was "no safe dose" for all carcinogenic substances. From what I can gather, this was a theory first approach to regulation. Better safe than sorry. It is a bit of a nonsense because it cannot be enforced. E.g. Oxygen, which essential to human life. is a DNA mutagen. Some substances are thousands of times more carcinogenic than others. E.g. Aflotoxin made by fungi growing on badly stored nuts or grain is about the most carcinogenic substance known. It may indeed have "no safe dose". Yet that does not mean you get cancer eating some. I loved nuts when I was a child. I must've accidentally eaten bad nuts at least 50 times. Mostly spitting it out but I'm sure some of the "no safe dose" deadliest carcinogen slipped by. I'm still alive and cancer free. DNA mutation and cancer is a complex thing. To cause cancer several mutations are needed and they must be the right ones: leading to a cell growing out-of-control, dividing into new cancerous cells, undetected by our body's immune system. Our body thinks it is still a normal body cell. The wrong mutation will lead to the immune system identifying a bad cell and killing it. Most mutations will be detected and destroyed by our immune system. Unfortunately we have a lot of cells (~ 70 trillion). Each undergoes up to 1 million DNA damage events per day. To start a cancer, it only takes one cell to slip by with the right set of DNA mutations which fool the body's immune system into thinking it's kosher. Most DNA damage events can be repaired by the cell itself, so do not lead to mutations. Single-strand DNA damage is basically repaired. Double-strand DNA damage is also repaired but may not be done so well.

Hormesis to the rescue

In addition there is a hormetic effect. A low dose of a carcinogen may stimulate the immune system to protect the body against cancer. E.g. by increasing autolysis of suspect or damaged cells. This hormetic effect of radiation is thought to kick in at a dose much lower than the 1930s maximum limit. There are a lot of carcinogenic substances about. Oxygen is a DNA mutagen, as well being essential to animal life. We breath in about 500 gram per day of it. It's estimated that up to 3% goes astray in that it is not all used by the right metabolic pathway. That's about a third of a mole per day of wayward oxygen our body must deal with. 2 × 10²³ rogue molecules of oxygen for about 70 trillion human cells; about 3 billion rogue oxygen molecules per human cell. Every day. That must be causing some cancer, some of the time. If the immune system can be stimulated by a hormetic effect, radiation can actually reduce the effect of cancer. Perhaps protecting against harm done by more common / chronic carcinogens as well. It's difficult for me to imagine how oxygen could induce such a (hormetic) effect!, since oxygen is so common. Yet:

Hyperbaric oxygen therapy of humans (100% O2 at 2.5 atm), for instance, induces significant oxidative DNA damage to peripheral blood cells on the first day of therapy but fails to cause damage on subsequent days
-- Oxidative Decay of DNA, by Kenneth B. Beckman and Bruce N. Ames

At moderate to low radiation doses (below 730 mGy/year) the harmful effect of radiation is increased cancer risk. It is a carcinogen. Yet no major illnesses developed among workers after maximum dose limits were imposed in the early 1930s. Because at this level < 2 mGy/day, the hormetic effect of radiation protecting us out-weights the additional harm done by mild radiation exposure. In 1948 / 1950 this exposure level was cut to just a quarter of the 1930s. Then it was cut again to "no safe dose". No scientific studies conclusively show either the lower limit (~ 150 mGy/year) or the zero limit are safer. Scientific studies are inconclusive. Some show barely perceptible increased risk. Some show a clear hormetic effect of less cancer risk.

More Readings


Monday, 28 November 2016

Bias leads to cherry picking.

Nicholas Thompson

... The authors don’t seem to deny that they have a bias against nuclear energy. I completely believe that any mistakes that were made in this paper were honest mistakes. But in this response, they state that their, “…contribution was intended to challenge a widespread assumption about the supposed climate benefits of nuclear power.

In this sentence, the authors seem to be saying that it is their belief that nuclear does not have climate benefits, or at least that was what they were trying to prove ...

Said more diplomatically than me.

It's clear the authors were engaged in advocacy not analysis. Hardly surprising they got it wrong. They do not follow any clear cut method [They were comparing index values that began = 100 in 1990. Yet they take too small a slice: 7 years, 2005 - 2012]. The indices only have meaning when followed per country from 1990. So that progress can be clearly seen, countrywise. Some countries are large, others small. Some used energy far more inefficiently (the ex-communist countries) in 1990 than today. Some are very highly populated (Malta), some sparsely (Northern Baltic region) Some were more badly affected by the GFC during that time than others. I can go on all day like this ...

A cross-country comparison of indices never made sense. Their data selection has no clear rules to select time periods. Their choice of index (a derivative indicator), rather than GHG emissions per capita (a more primary indicator) made no sense.

They can cherry pick to their hearts content until they find the right combination of data and method that just so happens to imply what they want to show.
Their peers and journal editors are clearly happy with that state of affairs because they allowed the original article to be published.

This is bias right through the academic process. Even the critics and gatekeepers at Retraction Watch are biased. They censored my criticisms.

Friday, 25 November 2016

Pyrrhic Victory Speech

We hear the controversial paper by Andrew Lawrence, Benjamin Sovacool & Andrew Stirling was retracted. Andrew Lawrence takes full blame for the arithmetic errors. I suppose we should all be happy with this, and put our metaphorical daggers to rest? Not me.

Are we unfair, or bitter?

No we're not unfair. Pro-nukes should not be too forgiving.

  1. The paper was launched with great fanfare. Their press release was echoed by at least 10 green media websites, including The Ecologist. I bet the authors were aiming for a bigger splash. Yet no major media outlet ran with it. Not even the ever so reliably anti-nuclear Guardian newspaper in the UK.
  2. The article should never have been published. So the retraction does not exonerate any of the parties involved. They should've checked their numbers against other sources. For example: their political allies like Climate Action Network (Europe), CAN show no advantage to pro- nor nuclear phase out countries. E.g. In the CAN approved Climate Change Performance Index (CCPI, see this link), Or see my summary comparing the pro-nuke and nuke-phaseout countries. We can clearly see there is no advantage to one nor the other. CAN include some organizations with explicit anti-nuclear power policies (such as Greenpeace UK, WWF UK, ...); not exactly nuclear industry shills as anti-nuke campaigners would say. The article relied on only one data set to back their view. Other data sets are available, which they should've checked their results against before publication. The journal editors should've used better peers. For example, I saw the data was wrong straight away (as others did). What kind or peer is unfamiliar with greenhouse gas reductions in Europe? None. Everyone has these reductions thrust into our eyes several times a year.

Another blog of mine has a timeline of events, with all links. Many thanks to Nicholas Thompson, Suzanna Hinson, and Stephen Tindale. Unlike other people I know, they are probably more forgiving. So my view is not necessarily theirs'.

Sunday, 13 November 2016

My advice to Trump on nuclear power

At the start of his first term, Obama appointed Gregory Jaczko, who was basically an anti-nuclear power activist, to run U.S. nuclear power regulation: The Nuclear Regulatory Commission, NRC. This activist proceeded to do as much damage as he could to the cause to reducing green house gas emissions.

I doubt Trump will be able to match that feat, no matter how many coal mines and gas pipelines he allows to operate.

Trump should do the opposite of what Obama did. Instead of spiking nuclear power, Trump should reform the NRC with a few strategic deregulations, and re-regulations. Eventually the USA will see the fruits of such deregulation in several years time. There's very little, perhaps nothing, Trump can do immediately to jump start cheap nuclear power. That's why he must begin by reforming regulation.

  1. Change exposure limits for radiation from no-safe dose to a threshold dose. Even a threshold as low as 50 mSv/a looks like a real improvement. It will positively impact two things:
    1. It will undermine the rationale for ALARA. If tiny emissions are not harmful then why obsess over them? A great deal of time and money is wasted obsessing over small, but harmless, amounts of radiation.
    2. It will undercut radiophobia. Radiophobes will not longer be able to legitimately claim that 0.1 mSv, of say tritium, is a catastrophe. Radiophobes will not be able to use these arguments to lobby for a nuclear power shutdown as they have in the past.
  2. Change the NRC mandate. From a mandate that only tries to make nuclear power as safe as possible. To one that promotes safe, cheap nuclear power. Return to something like the old AEC mandate. Nuclear power plants of each type have already been made as safe as can possibly be. These advances will not be lost, no matter what.
  3. Force NRC to explicitly justify current and new safety measures by cost benefit analysis and assessment. Ensure that cost-benefits are measured in numerical units like DALY. IMO: only when you pin them down to numbers, will antis use proper cost-benefit.
  4. Look through all U.S. laws for anything quoting a precautionary principle and rescind that law. Republicans need to stop using precautionary arguments too.
  5. Clarify the position of U.S. government on issues like reprocessing and proliferation. If there are agencies out to stop reprocessing, please let us know what their rules are. If there are going to be reprocessing bans against nuclear used fuel, let the NRC oversee them. Likewise for other proliferation risks imagined and real. Please make technology bans explicit. This may involve clarifying exactly what the law is and which agencies have been directed to enforce or dictate rules and laws. I warn Mr T. that continued bans and heavy restrictions on reprocessing will result is continued expensive nuclear power. By enforcing the current 'de facto' monopolies. By preventing newer, better, technology.

Atomic Energy Commission - AEC

The AEC regulated nuclear power before the NRC was created:

In ... 1954, when Congress revised the law and, by allowing nuclear technology to enter the mainstream of American industrial life, it broadened the AEC's mandate. Congress declared that the widespread use of nuclear energy was a national goal and that it was the AEC's task to promote that growth.

But the AEC was created with a dual mission. Congress directed the AEC not only to promote nuclear power's peaceful uses, but also "to protect the health and safety of the public."

--Hostages of Each Other: The Transformation of Nuclear Safety since Three Mile Island, by Joseph V. Rees

Due to lobbying by coal power interests: the AEC was abolished in 1974/'75. It's regulatory functions were given to the Nuclear Regulatory Commission, NRC. The NRC was given only one single goal: to make nuclear power as safe as possible. Consequently, applications to build new nuclear plants fell to nothing, almost overnight. For those nuclear plants already with planning permission : a large number were never built, or completed largely over-due, over-budget. Costs of complying with extreme regulation practically doubled the cost of building nuclear power plants. In contrast: coal power never had its own draconian safety regime. The nuclear power industry, such that it was, did not lobby to spike coal power.

It was argued that this dual mandate created a problem - a paradox at the heart of the AEC - making it impossible for AEC to properly consider safety. This critique never had any legitimate foundation. It is a false critique. During its time, AEC made cheap, safe, nuclear power possible in the USA. The myth of unsafe nuclear power is just that. A myth created by phobics and Luddites either foolishly or recklessly. U.S. nuclear power has always been safe. Chernobyl happened in the Soviet Union, a communist dictatorship, where there were no checks and balances. Nothing like the AEC nor NRC. An unsafe nuclear power plant design such as the Russian RBMK was, in 1986, would never have been allowed in the USA. Not by the AEC, not even by the most fervent pro-nuclear power supporter.

Barriers to nuclear power

Some of the things U.S. government is holding back:

  • Lithium isotope separation: Dr. Stephen Boyd: MSRs - What are We Waiting For? Contrary to what Stephen Boyd says - there are no U.S. national security interests. Russia and China currently separate lithium-7 from lithium-6, and USA buys all the lithium-7, or lithium-6 it needs from Russia or China. Sure: lithium-6 can be used to make tritium. Sure: in theory, tritium could make a fusion bomb. But as Russia and China already make loads to lithium-6, and USA makes none: I don't see the national, nor international, security issue.
  • ... Canada that's ... a realistic scenario ... except I don't want to go to prison. I was told in no uncertain terms by the department of energy that if I bring any of my intellectual property off of the United States soil, that represents a national security threat, I will get thrown into prison. They told me over the phone and I know who they are. I'm not going to name them.
    -- Dr. Stephen Boyd
  • U.S. government invented the lie that breeder reactors and reprocessing are A-bomb proliferation threats. The opposite is true. At the moment U.S. makes about 2,700 tonnes of spent nuclear fuel each year. Any of that spent fuel can be easily chemically reprocessed to make, rather impure, plutonium. That plutonium could be used to make inferior A-bombs. In contrast: a properly working breeder reactor, with full reprocessing, will leave no useful waste for A-bomb proliferation. A breeder will leave only fission products.
  • Rare Earths - Thorium - the alternative, more abundant nuclear fuel - is often found in conjunction with rare earths. In mining, thorium is left behind as tailings. But the thorium can't simply be dumped because it is slightly radioactive. It's half-life is 14.5 billion years. It's classified by the EPA as naturally occurring radioactive material (NORM). Currently, this must be disposed of under state rules. The radioactivity is too low to cause harm, but just significant enough for the EPA to rule on. In practice, it means USA has no rare earth industry to speak of. USA is totally dependent upon, and at the mercy of Chinese imports. An EPA rule change could stop all that, and give USA a rare earth mining industry bigger than it used to have.
  • Thorium fuel. Could actually power current reactor technology as well. It will not be considered because it requires reprocessing and US government has always opposed that.

PS: Also read: Who killed nuclear power and why?